Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, empty) → x
f(empty, cons(a, k)) → f(cons(a, k), k)
f(cons(a, k), y) → f(y, k)
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, empty) → x
f(empty, cons(a, k)) → f(cons(a, k), k)
f(cons(a, k), y) → f(y, k)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, empty) → x
f(empty, cons(a, k)) → f(cons(a, k), k)
f(cons(a, k), y) → f(y, k)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
f(x, empty) → x
f(empty, cons(a, k)) → f(cons(a, k), k)
f(cons(a, k), y) → f(y, k)
Used ordering:
Polynomial interpretation [25]:
POL(cons(x1, x2)) = 1 + x1 + 2·x2
POL(empty) = 0
POL(f(x1, x2)) = 1 + x1 + 2·x2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RisEmptyProof
Q restricted rewrite system:
R is empty.
Q is empty.
The TRS R is empty. Hence, termination is trivially proven.